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1. APPEARANCE OF DIFFUSION
IN REAL POROUS SOLIDS
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A. FUEL CELLS
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B. SOILS AND ROCKS

Palsas in Berlin – ice lenses

(cryosuction)

Liquefaction
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Healing of the fructured bone

Diffusion MRI: tractography of major
brain white matter tracts

Diffusion MRI: anisotropy of
permeability in brain

Relation between colors and directions

C. TISSUES
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D. FILTERS AND TRANSPORT
OF POLLUTANTS

Pollen car filter

E. CRYSTAL GROWTH
BY SUBLIMATION

Schematic of growth of SiC-crystal
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Ceramic Matrix Composite (CMC) in SpaceLiner Engine

SpaceLiner

F. TRANSPIRATION COOLING
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2. LINEAR POROELASTIC MODEL
OF SATURATED MATERIALS;

ISOTHERMAL PROCESSES
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Wilmanski K.: A few remarks on
Biot’s model and linear acoustics
of poroelastic saturated materials,
Soil Dynamics & Earthquake Eng.,
26, 6-7 (2006) 509-536 Biot M. A.: Theory of propagation

of elastic waves in a fluid-saturated
porous solid. I. Low-Frequency Range,
J. Acoust. Soc. Am., 28, (1956) 168-178. 
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These parameters follow from
micro- macro transition

Wilmanski K.: On Microstructural Tests
for Poroelastic Materials and Corres-
ponding Gassman-type Relations,
Geotechnique, 54, 9 (2004) 593-603
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( ),0 en −= εζ

Remark: Fallacy of variational formulation of Biot‘s model

increment of fluid content instead of volume changes of the fluid

Then
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3. STRUCTURE OF MOMENTUM SOURCE;
PERMEABILITY, TORTUOSITY
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Momentum balance for the fluid without inertial forces
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Examples of hydraulic conductivity, intrinsic permeability
and permeability coefficient for a porous material saturated

with water (normal conditions)

1014 – 101510-6 - 10-710-11 - 10-12granite

1010 – 101110-2 – 10-310-7 - 10-8sandstone

107 -10910 -10-110-4 - 10-6oil reservoir

103 – 106105 - 1021 – 10-3well sorted 

gravel

[kg/m3s][darcy]=10-12[m2]

K

[m/s]

soil pκ π

Necessary extensions of the permeability:

1. Tortuosity
2. Anisotropy
3. Hereditary
4. Nonlinearity
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Blake-Kozeny-Epstein relation:
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b – capillary shape factor (32 for circular pores, 48 for parallel slits)

Dh – hydrolic diameter; e.g. N spheres of radius d in REV:

Then

τ - tortuosity, i.e. ratio of the length of a streamline between two
points to their distance, 1>τ
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Anisotropic diffusion

Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena
in Porous Media, Dordrecht, Kluwer Academic Publishers 1991
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Schematic of the Representative Elementary Volume (REV)

with a streamline intersecting REV-boundary at a point of
the surface Ss. The latter is indicated by the thick line.

For REV – sphere of radius R
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Spectral representation
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This is obviously not necessary. Hence, tortuosity may enter solely through permeability
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4. MEASUREMENTS OF DIFFUSION PROPERTIES; NMR
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comp. G. Dagan this afternoon!

Groundwater flow velocimeter

1. Mechanical flow velocimeters – permeability
2. Electric resistivity (Nernst-Einstein relation

between diffusivity and conductance)
3. Diffusion Magnetic Resonance Imaging
4. Damping of acoustic waves - permeability
5. Surface waves (SASW) - porosity

Miniaturized surface NMR

EXPERIMENTAL TECHNIQUES

SASW
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NMR Primer

In quantum mechanics description proton (spin-1/2 particle) possesses

- intrinsic magnetic moment
- intrinsic angular momentum
related to each other

pµ

pJ

,ppp Jµ γ=

Tesla
rad6105764.422 ××= πγ P

- gyromagnetic constant

Wave function for proton in magnetic field satisfies Schrödinger equation

,ψ
ψ

Pi
t

µB ⋅=
∂

∂
h

This yields the following equation for the average macroscopic
intrinsic magnetic moment („observable“)

.Bµ
µ

×= PP

P

td

d
γ
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For the field 300 eBB b==
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3Pµ - constant

Solution – precession with the Larmor frequency: ( ) .,exp 000 bti Pγωω =−

It has the order of 100 MHz for the field 1 Tesla („radio frequency“ range –RF)

Macroscopic model of many interacting particles with spin:

macroscopic magnetization in a magnetic field
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T – absolute temperature

ρ - mass density
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Influence of diffusion – Bloch-Torrey equation 
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diffusivity tensor

NA0.071 +/- 0.0067.690.18 +/- 0.03;

4.76-6.67 x 1011

Indiana Limestone

NA0.0603 +/- 0.004NA0.64 +/- 0.1;

1.35-1.65 x 1011

Cutbank H

0.2970.184 +/- 0.95.582.6 +/- 0.3;

3.44-4.35 x 1010

Austin Chalk

0.2330.151 +/- 0.0114.767.0 +/- 0.9;

1.27-1.63 x 1010

Edwards Limestone

NA0.112 +/- 0.012NA123 +/- 24;

10.1-6.8 x 108

Bentheimer

0.1250.113 +/- 0.0073.45559 +/- 93;

1.53-2.15 x 108

Fontainebleau

Absolute Porosity

(pycnometer)

Effective PorosityTortuosityPermeability                      [mD]; 

[kg/m3s]

Rock Sample

Example 1: Results of Xenon NMR measurements for some rocks

Basic principle – measurements of relaxation times for different directions
of the magnetic field

pκ
π
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Example 2: Some results for core plugs of Alermoehe
sandstone from various depths

0.096.123.13;

3.19 x 1010

3241.44 [m]

0.113.820.7;

4.83 x 109

3240.69 [m]

0.085.363.59;

2.79 x 1010

3236.79 [m]

0.095.0411.6;

8.62 x 109

3235.34 [m]

0.021.060.16;

6.25 x1011

3224.45 [m]

Porosity

(pycnometer)

TortuositySample Permeability (gas) 

pκ π
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5. MONOCHROMATIC ACOUSTIC WAVES;
SPEEDS AND ATTENUATION
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Biot argued that the analysis of a flow of viscous fluid
in channels of a porous material yields a dependence
of the permeability on the frequency of a monochromatic
wave. After inversion of the Fourier transform the following
relation should follow for isotropic materials

( ) ( ),2

0 tFt τππ =
Biot M. A.: Theory of propagation 
of elastic waves in a fluid-saturated
porous solid. II. Higher Frequency
Range, J. Acoust. Soc. Am., 28,
2 (1956) 179-191.

where the dimensionless function F depends on the frequency ω in
the following way
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for the flow between
parallel walls

in a circular duct
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Real (upper curves) and imaginary (lower curves) parts of functions ( )ξF

Solid lines correspond to the case of parallel walls and dotted lines to the circular duct

( ) ( ) ,
2

1
ωω

π
ω

deFtF
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=with

ξ=1 corresponds for water to app. 1 kHz frequency
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“Under the stated assumptions v is obviously linearly related to the pressure gradient at any frequency

( ) ( )
),,1.2(.

~

,~ baP
k

P
t

f ∇−=−∇=
∂

∂

η

ω
φρωα v

v

( nv == φµη , in the notation of this lecture). The frequency-dependent tortuosity ( )ωα~ is

( )ωk
~

is defined in (2.1b) by analogy with the steady-state ( )0=ω definition.

defined in (2.1a) by analogy with the response of an ideal (nonviscous) fluid. … The frequency–dependent

permeability

Fallacy of relation between tortuosity        and added mass    

Johnson D. L., Koplik J., Dashen R.: Theory of dynamic permeability and
tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379-402.

The above argument is physically and

mathematically wrong. Physically, both
equations (2.1) follow from different 

simplifications of momentum balance –
comparison of apples and oranges.
Mathematically, the first relation

is hyperbolic, the second – parabolic.

Added mass has only a little influence on propagation of acoustic waves

Albers B., Wilmanski K.: On modeling
acoustic waves in saturated poroelastic media,
J. Engng. Mech., 131, 9 (2005) 974-985.

Quotation from:
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Monochromatic waves
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The solution of this eigenvalue problem yields two longitudinal
waves: P1 and P2 (slow, Biot, second sound), and the transversal
(shear) wave.
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Relation for the wave number in the case of transversal waves
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:1=τ

Phase speed                  of the shear wave;
the dotted line corresponds to F=1,
the solid line for F introduced by Biot

kc Re/ω= Attenuation          of the shear wave;
the limit for the solid line is infinite

kIm
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( ) :1=ωF

Phase speed of the shear wave for
two values of tortuosity:

1=τ - dotted line

6=τ - solid line

Attenuation of the shear wave for

two values of tortuosity:

1=τ - dotted line

6=τ - solid line

the limit for the solid line is finite
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6. CONCLUDING REMARKS;
NONISOTHERMAL PROCESSES; NONLINEARITIES
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1. Nonisothermal processes do not yield essential
changes in permeability properties for linear models
of fully saturated materials. Otherwise couplings with
temperature changes influence the degree of saturation,
surface properties of channels, capillary forces, etc.

2. Nonlinearities are essential, particularly for large Reynolds
numbers, changes in microstructure (piping), liquefaction.
The simplest (quadratic) correction was proposed by P. Forchheimer,
many other models are applied as well.

3. Both nonlinearities and the nonisothermal character
play an important role in the range of low temperatures
(freezing and cryosuction) as well as in the range of
high temperatures (melting, boundary layers). Little
has been done.
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